REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Pubiic reporting ourden for ths Y of int 118 [ ge 1 hour per responsa, ncluding the ume for reviewing iNStrUCTions, searching data sources,
gathenng and ning the data and pleting and re g the of information. Send comments regarding this burden sstimats or any other aspect of this collection
of information, including suggestions for reducing thrs burden to Washington + ters Service, Di for \nformation Qperations and Reports,

1213 Jefferson Davrs Highway, Suits 1204, Artington, VA 222024302, and to the Cffice of Management and Budget,
Paperwork Reducton Progect (0704-0188) Washington, OC 20503,

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DO-MM-YYYY) 2. REPORT DATE 3. DATES COVERED (From - To)
14-09-2000 September 14, 2000 March 1995 - Sep 2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Automated Synthesis of Multi-Agent Control

5b. GRANMUMBER

BN ASs - 0132

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Maja J. Mataric'

Sa. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . 8. PERFORMING ORGANIZATION
REPORT NUMBER

Brandeis University
University of Southern California

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

i3

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

14, ABSTRACT
We have been pursuing a synthetic approach to studying the problem of controlling complex multi-robot systems
by simultaneously developing a theory and testing it on complex domains consisting physical mobile robots. This
process allows us to evaluate, improve, and further develop our theory, while producing a set of useful software
and hardware applications. Our approach is behavior-based; the robots use a set of behaviors (parametric, goal-
achieving control laws) as a substrate for control, representation, and learning. This approach scales well to large
multi-robot systems, and enables us to flexibly explore complex problems such as the coordination of
decentralized groups and learning in such distributed systems.

15. SUBJECT TERMS

Multi-robot control, robot learning, synthesis and analysis of robot behavior, mobile robots, behavior-based
robotics '

16. SECURITY CLASSIFICATION OF- 17. LIMITATION OF 18, NUMBER |19a. NAME OF RESPONSIBLE PERSON

+ REFORT  [b. ABSTRACT ToTnispage —|ABSTRACT OF PAGES Prof. Maja J. Mataric
19, TELEPONE NUMBER (Inciude area code)

Unclassified | Unclassified | Unclassified | Unclassified 30 (213) 740-4520

Standard Form 298 (Rev. 8-98)

o T T
i

DTiC Q"?'\L,J f Al

OTED 4



ONR Final Report
Grant title: Automated Synthesis of Multi-Agent Control

Principal investigator: Maja J Mataric
Computer Science Department
University of Southern California
941 West 37th Place, SAL 228, Mailcode 0781
Los Angeles, CA 90089-0781
tel: (213) 740-4520, fax: (213) 740-7285
mataric@cs.usc.edu
Grant number: N00014-95-1-0759
End date: Aug 31, 2000 (includes one year no-cost extension)

Abstract

We have been pursuing a synthetic approach to studying the problem of controlling complex
multi-robot systems by simultaneously developing a theory and testing it on complex domains
consisting physical mobile robots. This process allows us to evaluate, improve, and further
develop our theory, while producing a set of useful software and hardware applications. Qur
approach is behavior-based; the robots use a set of behaviors (parametric, goal-achieving
control laws) as a suibstrate for control, representation, and learning. This approach scales
well to large multi-robot systems, and enables us to flexibly explore complex problems such
as the coordination of decentralized groups and learning in such distributed systems.

1 Goals of the Project

Our goal in the work funded by ONR and reported here was to provide techniques that
facilitate the development of effective multi-robot control systems that are:

¢ Robust to individual robot failures and communications failures;
o Adaptive to environmental and system changes;

o Efficient with respect to computation, communication, hardware requirements, energy
expenditure, and environmental resources.

The techniques we developed succeed in meeting all of the above goals. They are prin-
cipled and generally-applicable, leading to easily modifiable and analyzable systems. Fur-
thermore, it is essential that these techniques were validated using groups of physical mobile
robots in a variety of task domains.
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2 Overview of Research

A large body of work was produced under the funding provided by this grant. It can best
be summarized in the following three contribution categories:

1. Methods for robust, efficient distributed behavior-based control of robot teams:
i) basis behaviors and ii) port-arbitrated behavior coordination:

2. Methods for on-line real-time modeling of interaction dynamics, using the un-
derlying behavior-based control structure;

3. A large set of validated coordinated multi-robot systems demonstrating: chain-
ing, robot soccer, variations on foraging (collection & coverage), and multi-target track-
ing.

This report describes each of these contributions, briefly describing the approaches, and
providing a complete list of publications (by topic as well as cumulatively) and associated
project Web sites, for additional information. '

The rest of the report is structured as follows. We first describe our research into behavior-
based control of multi-robot teams which addressed the issues of robustness, adaptivity, and
efficiency. Next we describe broadcast of local eligibility, a general method we developed
for coordinating collections of robots, based on well-defined port-arbitrated behavior mes-
saging. Next we describe the methodology we developed for on-line real-time statistical
modeling of interaction dynamics through using augmented Markov models, founded on the
well-understood theory of semi-Markov chains. We conclude the report with a list of specific
scientific and Navy/Dod contributions and the complete publications list.

3 Behavior-Based Control of Multi-Robot Teams

While terminology and some concepts of behavior-based robotics have become widespread,
the central ideas are often lost as researchers try to scale behavior to higher levels of com-
- plexity. “Hybrid systems” which deliberate plans in terms of behaviors rather than simple
actions have become common for higher-level behavior. Our research has demonstrated that
a strict behavior-based approach can scale to higher levels of complexity than many robotics
researchers assume, and that the resulting systems are in many cases more efficient and ro-
bust than those that rely on “classical AI” deliberative approaches. Our focus is on systems
of cooperative autonomous robots in dynamic environments.

Though widespread in use, the term “behavior-based” lacks a clear, exact definition.
Matari¢ (1997) gives an overview of common conceptions of the behavior-based approach.

Brooks (1991a) describes a set of four key concepts essential to behavior-based robotics:
situatedness - the use of the world as its own best model, embodiment - use of the world
to ground regress, intelligence - as determined by the dynamics of interaction with the
world, and emergence - intelligence as behavior in the eye of the beholder. Behavior-based
systems thus are structured in terms of the observable activity that they produce, rather than
traditional functional decompositions (Brooks 19916). The activity-producing components,
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behaviors, compete for actuator resources and share perceptions of the world rather than
any centralized representation. Behaviors tend to be simple, so that computational “depth”
- the amount of computation that takes place between sensory perception and actuator
commands - is minimized to maintain a high degree of interactivity with the environment.
Behavior-based systems are highly parallel so that capability - new behaviors - can be
added as increased computational “breadth.” Behaviors are “layered” in such a way that
capability is incrementally added to a functional system, leading to a design process that
goes not from isolated components to a final system which integrates them into meaningful
behavior, but from simple yet complete behavior to more complex complete behavior (Brooks
19916, Brooks 1990a, Matari¢ 1995a). The design of behavior-based systems is thus often
referred to as a “bottom-up” process (Brooks 199056, Steels 1994), but this refers not so
much to determination of the structure of the system as to a basis in physical sensing and
action, and incremental development of sophistication from simple to complex. The system
structure undergoes drastic changes driven by top-down task constraints as well as bottom-
up sensorimotor constraints until a set of basis behaviors is determined (Matari¢ 1995); it is
only with this solid foundation that the design process becomes one mainly of synthesis.

Basis behaviors (Matari¢ 1995) are a set of minimal behaviors that are sufficient to
be combined into solutions to a class of tasks. Qur -early research (Matari¢ 1995a) on
group behavior showed how various complex, biologically-inspired group behaviors could be
composed from a set of general basis behaviors for spatial tasks, through two operators,
summation of outputs and switching of outputs. Flocking, for example, is achieved by the
summation of homing, dispersion, aggregation, and safe-wandering, while foraging results
from switching (based on sensory conditions) between safe-wandering, dispersion, homing,
and following. : » . :

The choice of basis behaviors has great influence on the efficiency of both the development
process and the final system. Effort expended in refining basis behavior choices is usually
paid back many times over; it is all too easy to reach (and sometimes difficult to detect)
a state where a good percentage of a system’s code is dedicated to working around earlier
implementation choices. A good set of well-defined basis behaviors form a highly-reusable
library of code; only a small amount of coding (if any) need be done to add “higher layers”
which perform new tasks.

The following is a list of PI’s publications that define, explain, and survey behavior-based
control.

Published Papers:

Matarié, Maja J., “Coordination and Learning in Multi-Robot Svstems” [EEE Intelligent
Systems, Mar/ ~\.pr 1998, 6-8. -

M;téﬁé, Maja J., “Behavior-Based Robotics as a Tool for Syn‘thresirs of Artificial Behavior
and Analysis of Natural Behavior”, Trends in Cognitive Science, 2(3), Mar 1998, 82-87.

Matarié, Maja J., “Behavior-Based Control: Examples from Navigation, Learning, and
Group Behavior”, Journal of Theoretical and Erperimental Artificial Intelligence, special
issue on Software Architectures for Physical Agents, 9(2-3), H. Hexmoor, I. Horswill, and D.
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Figure 1: Foraging with a robot chain. a) A robot returns to the chain carrying a puck after
a circular excursion. b) The robot at the end of the chain leaves to become a forager if it

notices that many successful foragers are coming along‘the chain (indicating that the chain
has grown past a rich deposit).

Kortenkamp, eds., 1997, 323-336.

Mz;tarié, Maja J., “Behavior-Based Robotics”, invited contribution to the MIT Encyclopedia
of Cognitive Science, R. Wilson and F. Keil, eds., MIT Press, April 1999, 74-77.

The PI also maintains several Web informative pages on the topic:
http://robotics.usc.edu/ “"maja/robot-control.html
http://robotics.usc.edu/ “maja/bbs.html
http://robotics.usc.edu/“maja/gruop.html

Next we present three research projects which examine three types of behavior-based
coordination of multi-robot systems. All three are inspired to some degree by biological sys-
tems: one strives to recreate specific navigational techniques of ants, one uses different types
of arbitration borrowed from various natural systems in a foraging task, and the third ap-
plies principles of environmental interaction abstracted from natural systems to teamwork in
Robot Soccer. Further, all three relate deeply to the concept of situatedness discussed above
- interaction through the environment. The robot chaining and soccer systems take active
advantage of physical interactions between robots, while the different arbitration schemes for
foraging are-analyzed with respect-to-their-ability-toprevent destructive-interactions (i:e.,
physical interference, or collisions).




4 Robot Chaining

Our robot chaining research was performed as an attempt to reproduce the stigmergic
techniques' and benefits of pheromone-trail formation by ants. In the natural systems,
individual ants deliberately encode information into the physical environment (by deposit-
ing chemicals known as pheromones), and over time interesting global properties emerge
that allow these chemical markings to be used as a navigational aid for position-dependent
tasks. The release of pheromones leads to trails that can be followed, which are subject to
decay of pheromone strength over time. When pheromones are released only during certain
phases of a task (e.g., while carrying some item back to the nest), trails can begin to form
efficient paths to useful locations, such as rich supply areas. Since paths that take less time
to traverse (and are thus traversed more frequently) gain more pheromone strength than
longer ones, a very simple control strategy of probabilistically choosing the “strongest” path
leads to group behavior that adjusts to follow dynamically determined shortest paths to
dynamically changing useful destinations.

Our robot chaining system for foraging replaces the chemical pheromones of the ant trails
with the physical bodies of simple robots (as illustrated in Figure 1). We have demonstrated
that a group of robots equipped with only physical contact sensors is able to form a physical
pathway that members of the group can use for navigation. The behavior of chain-following
consists of moving in arcs that guarantee intermittent contact with the chain (much as we
might guide ourselves by tapping a hand against a wall in the dark). The search behavior is
performed through “circular excursions,” in which the robots hold a (random) steady steering
angle so as to explore an area next to the chain while being able to regain contact with the
chain without need for odometry or other non-contact sensors. A join-chain behavior can
be used as robots reach the end of the chain, through a protocol of taps exchanged by
the current “last link” and the robot attempting to join. The robots that are part of the
chain maintain chain integrity through a link behavior intermittent contacts, using a similar
tapping protocol. ’

Since the links of the chain are capable of computation and motion, rather than depositing
pheromones and having paths “emerge” through chemical processes the chain links can
collect some statistics of the activity of the chain-following robots, and use them to adapt
to the environment by physically modifying the chain. Two types of chain modification are
sufficient for generating an optimal path to a rich source in a plane with no insurmountable
obstacle: shifting of chain direction, and lengthening/shortening of the chain.

Natural ants change roles (e.g., from foragers to internal nest workers) in response to
the number of encounters each ant has with ants fulfilling other roles — a nest worker that
encounters a number of successful foragers in a given time period will decide to forage. As
seen below, the process we describe for adjusting the length of the chain functions in a very
similar manner.

 In order for the chain to move to intercept a rich source, all that is necessary is for the
chain links to monitor how many times they have had Success Reports on their right and
left sides. If basic behaviors are in place that maintain chain integrity, individual robots can

!Stigmergy refers to the various means of interaction through the environment rather than through direct
communication. '



shift towards the direction of more Success Reports (within constraints of chain integrity)
without need for explicit communication with neighboring links. In this way, the entire chain
will slowly shift towards a rich source.

In order to more clearly replicate the ant systems, and eliminate the risk of the chain
infinitely extending in a direction with no sources, it would be necessary to introduce random
direction-shifting of chain links with some probability. Decay of trails could be replicated in
two ways: either the links could factor recency into their statistics, or, more minimally, the
links could merely react by shifting towards the direction of every Success Report, allowing
such temporally-based statistics to to be computed “physically.”

Ideally, once the chain has shifted to intersect a rich source, we would like it to end there
— that is, we would like the end of the chain to be near the center of the richest area, so that
robots can return directly from the source to Home. In situation where the chain extends
past a rich deposit, the chain should be shortened in order to both optimize the pathway
and allow more robots to participate in transport of material.

There are two ways for this to happen; in either case, the chain will tend to shorten to
the optimal length when there is a rich deposit, and naturally begin to grow again if this
source begins to be exhausted. One way is for the chain links to collect Success Report
statistics (most likely, the number of recent Success Reports at each link, for comparison)
and pass them along the chain through some protocol, allowing the end-of-chain robot to
decide when it should leave the chain and become a forager (by passing end-of-chain status
to the preceding link).

A more minimal, situated way to adjust the chain length is to simply have the end-of-
chain robot leave the chain after a period of time. If the chain extends past a rich source,
there will be fewer robots attempting to append themselves to the end of the chain (since
many will be carrying material and thus be ineligible); if the chain does not reach a source,
few if any robots will be carrying and thus most will attempt to append themselves and
lengthen the chain. This can be seen as dynamic role assumption such as (Gordon 1999)
finds in ant colonies: when the end-of-chain encounters mostly successful foragers (which do
not attempt to append themselves to the chain), it is likely to leave the chain and become -
a forager. When the foragers encounter mostly chain links without finding useful material,
they tend to become chain links. The robots, like the ants, fulfill roles as determined by
global constraints.

Through a physically-situated approach, robots are able divide themselves efficiently into
foragers and chain links and perform position-dependent tasks using only local sensing and
interaction. Werger & Matari¢ (2000) discusses further interesting properties of the chaining
system regarding efficient role assumption given the inherent physical heterogeneity of the
particular robots used.

Published Papers:

Werger, Barry B. and Matari¢, Maja J., “Robotic Food Chains: Externalization of State
and Program for Minimal-Agent Foraging,” From Animals to Animats 4, Proceedings of the
Fourth International Conference on Simulation of Adaptive Behavior, MIT Press, pp. 625-
634.
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Figure 2: Three versions of the foraging task. a) Homogeneous: all robots are behaviorally
identical and act independently. b) Pack: robots are organized in a dominance hierarchy. c)
Caste: robots are behaviorally differentiated and occupy different regions of the task space.

Werger, Barry B. and Matarié, Maja J. “Exploiting embodiment in multi-robot teams”, USC
Institute for Robotics and Intelligent Systems Technical Report IRIS-99-378, 1999.

More information about this work can be found on the project web page:
http://robotics.usc.edu/ barry/Chaining.html

5 Ethologically-Inspired Foraging

Social structure plays an important role in the performance of a group, whether it consist

of biological or synthetic individuals. In a synthetic approach, such as mobile robotics, it
may is difficult to determine an appropriate social structure for a group performing a spec1ﬁc
task. Issues to be considered include how many robots to use, and how the task should be
divided both temporally and spatially among the individuals in order to allow completion of
the task and provide a desired level of performance.

A pragmatic, principled approach to guide the resolution of these issues is de31rab1e We
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have explored such an approach based on the analysis and manipulation of physical interfer-
ence (i.e., collisions) a readily measurable property of mobile robotic systems. Our approach
involves a controller refinement methodology that is motivated by biological evolution and
based on the application of ethologically inspired arbitration schemes, i.e., modifications to
social structure, or the multi-robot controller.

In our approach, the first multi-robot controller that is constructed for a desire task is
homogeneous, loosely analogous to the herd phenomenon exhibited by certain animal species.
In such a controller, the robots are behaviorally identical, each capable of independently
completing the entire task. Since the robots function independently of each other, there is
no need for explicit communication. The homogeneous controller enables a base-case analysis
of interference characteristics. This initial controller is refined by modifying its interference
characteristics through the employment of pack arbitration or caste arbitration.

Pack arbitration is modeled after the phenomenon of the pack observed in wolf and
other animal societies. In these, any .individual is physically and behaviorally capable of
performing most functions necessary to the group. In order to minimize aggressive behavior
which, if not controlled, can jeopardize the pack, a form of dominance hierarchy exists
among the individuals. Similar to animal packs, in pack arbitration, all of the individuals of
the robot group are physically and behaviorally capable of performing any of the functions
necessary for the group to complete the task (as is also true for the herd scheme). To avoid
interference (collisions) between individuals, the controller is modified so that the robots take
turns entering regions where interference was high in the homogeneous case, with the most
dominant robot going first. This form of arbitration contains some implicit assumptions
about communication. The robots must be able to communicate their rank and intention to
enter a region of potentially high interference. In addition, they must be able to determine
when a dominant robot has failed so as not to wait indefinitely for it to complete its objective.

Caste arbitration is modeled after the structure apparent in many social insect societies.
In these, individuals are behaviorally heterogeneous and are not capable of accomplishing
all of the tasks that the group requires. Individuals may also be physically differentiated.
As an example, consider many ant species whose colonies include worker, drone, possibly
warrior castes, and at least one queen. Each individual is a member of one of these castes
and has associated physical and behavioral characteristics. No one caste can maintain the
colony without the others.

In caste arbitration, physical interference between robots is modified through the use
of territoriality, with different castes occupying different regions of the task space and po-
tentially having different behavioral repertoires. This limits destructive interactions such
as collisions. Robustness in caste arbitration is achieved by allowing members to change
castes when necessary. If, for example, all the members of one caste fail, a member of some
other caste must be able to take over. Some form of communication is needed to determine
the number (or density) of individuals in each caste. Such caste switching is observed in

honey-bee societies (McFarland 1987).

We have demonstrated our interference-modifying approach to controller refinement by
implementing homogeneous, pack, caste, and territorial behavior-based controllers for a for-
aging (object collection) task, a prototype for various applications including distributed so-
lutions to de-mining, toxic waste clean-up, and terrain mapping (Figure 2). The experiments
required four physical mobile robots to search an 11 x 14 foot region for pucks and bring
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them to a designated goal location. We evaluated and compared the controllers according
to three performance criteria: time-to-completion, inter-robot collisions (interference), and
energy expenditure. An important component of this analysis was the comparison of internal
behavior activations to the externally observed interference. This initial study of behavior
activations inspired our later efforts in modeling interaction dynamics using behavior activa-
tions and augmented Markov models. A parallel effort in our work on ethologically-inspired
foraging aimed at demonstrating the ease with which robust, easily modifiable behavior-
based controllers may be designed, implemented, and evaluated.

Published Papers: -

Goldberg,..Dani and Matari¢, Maja J., “Design and Evaluation of Robust behavior-Based
Controllers for Distributed Multi-Robot Collection Tasks”, in “Robot Teams: From Diver-
sity to Polymorphism”, Tucker Balch and Lynne E. Parker, eds., 2001.

Goldberg, Dani and Matari¢, Maja J., “Robust Behavior-Based Control for Distributed
Multi-Robot Collection Tasks”, USC Institute for Robotics and Intelligent Systems Tech-
nical Report IRIS-00-387, 2000. Also submitted to IEEE Transactions on Robotics and
Automation.

Fontan, Miguel S. .and Matari¢, Maja J., “Territorial Multi-Robot Task Division”, IFEE
Transactions on Robotics and Automation, 14(5), Oct 1998.

Goldberg, Dani and Matari¢, Maja J., “Interference as a Tool for Designing and Evaluating
Multi-Robot Controllers”,. Proceedings of the Fourteenth National Conference on Artificial
Intelligence, AAAI Press, 1997.

Goldberg, Dani and Matarié, Maja J., “Interference as a Guide for Designing Efficient Group
Behaviors”, Brandeis University Computer Science Technical Report CS-96-186, 1996.

Fontan, Miguel S. and Matarié, Maja J., “A Study of Territoriality: The Role of Critical
Mass in Adaptive Task Division”, Proceedings, From Animals to Animats 4, 4th Interna-
tional Conference on Simulation of Adaptive Behavior (SAB-96), P. Maes, M. Matarié, J-A.
Meyer, J. Pollack, and S. Wilson, eds., MIT Press, 1996, 553-561.

More information about this work can be found on the project Web page:
http://robotics.usc.edu/ dani/hetero-homogeneous-groups.html.

5:1-  Minimalist Robot-Soccer

Robot soccer has become the recognized benchmark challenge domain for both mobile
robotics and Artificial Intelligence in general. Because the task requires both real-time
tactics and higher-level strategy, in a context that involves both cooperation (within a team)
and competition (between teams), it presents a set of challenges that is uniquely complex,
and thus progress on this problem has implications in various application areas. While robot
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Figure 3: Formations in Robot Soccer. a) Offensive: Interaction of simple behaviors causes
the robots to fall into a V-formation when the ball is in motion roughly towards the oppo-
nent’s goal. Perceptual properties limit the formation to three robots. b) Defensive: When
the ball is not moving roughly towards the opponent’s goal, the robots cluster around it to
form an effective barrier and be in good positions for recovery.

soccer has not been a major area of our research, we have successfully validated our behavior-
based methodology in this domain. We used minimalist behavior-based techniques to design
a simple control systems that displays highly sophisticated individual and team behavior
including effective obstacle avoidance in a dynamic environment, generation of smooth, ef-
fective trajectories, three separate methods of ball handling, and dynamic configuration into
appropriate population-limited offensive and defensive formations. The robots use no explicit
communication, and for the formations, they are able to use local interactions to determine
globally optimal roles. ,

Werger (1999) discusses at length our minimalist approach to team cooperation for a
robot soccer team. Though individual players can perceive only the ball, the goals, and
obstacles (which are not distinguished but may be walls, opponents, or teammates), and
have no communication equipment, the team displays sophisticated cooperative behavior.
The team falls into appropriate formations for offensive and defensive situations with the
interesting property of formation size limitation.

The cooperative behaviors result from the interaction of simple individual behaviors.
Push causes the robot to line up behind the ball and push it towards the opponent’s goal.
A second behavior, Safety, causes the robot to maintain the maximum safe velocity (as
determined by sonar sensors). A third behavior, Disperse, causes the robot to rotate away
from anything too close to its sides. Finally, a Patrol behavior causes the robot to patrol its
half of the field defensively when it has not perceived the ball for a few seconds.

In an offensive situation, seen in Figure 3a, one robot serendipitously gets to the ball first
and begins to Push it forward. Teammates also try to Push, but their Disperse and Safety

behaviors slow them down and steer them away when they get very close to the Pushing
robot, and thus tend to fall into a V-formation.

This formation provides effective “fumble protection” that is essential in the robot soccer
domain. Robots often accidentally knock the ball off course while dribbling it forward;
this formation provides backup and recovery. With this formation it is not uncommon for
possession of the ball to transfer between the robots of an advancing group without loss of
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possession by the team. The formation also provides for a very quick defense if the ball is
stolen (see below).

The size of the offensive formation is limited by the interaction between the four behaviors
above and the physical bodies of the robots. Once there are three robots in the formation,
any other robot trying to Push the ball will have its view of the ball occluded by the bodies
of the first three robots in the formation. When this occlusion lasts for more than a second
or two, the Patrol behavior gains control of the robot and it gives up on following the ball.
In this way, necessary roles are filled (attacker, supporters, and defense) without negotiation,
explicit definition or assignment of roles, or even any representation of teammates. .

In a defensive situation (as in Figure 3b) the ball is not advancing toward the opponent’s
goal. The same behaviors described above cause the robots to fall into a semi-circular
arrangement around the ball rather than the V-formation of the advance, since the robots
on the sides are no longer kept behind by lower speed. This formation very effectively
prevents the opponent from continuing to move the ball up the field, and places players
in a good position to gain possession of the ball. An emergent “batting behavior” (another
result of the interaction between the four behaviors listed above, described in Werger (1999))
makes it likely that the Pushing robot will jostle the ball towards one of its teammates, which
can smoothly begin an advance from the side; this can be seen as a rudimentary form of
ball-passing. _

Transition between offensive and defensive formations is determined by motion of the ball,
and is not even perceived by the robots; there is no concept of “offensive” or “defensive”
(or even of “formation”) anywhere in the behavior structure. Simple sensing of the local
environment leads to flexible, dynamic team behavior that many researchers claim requires
higher deliberation and explicit communication.

Thus, in our soccer system, the situated approach allows robots to efficiently assume
roles in offensive and defensive formations as determined purely by physics-inspired interac-
tion and visual occlusion. Simple, stateless control allows sophisticated behavior including
dynamically-determined limited-size formations, maintenance and recovery of ball posses-
sion, and simple passing. Assumption of roles takes place without any communication or
explicit representation or coding of roles - the role behavior “emerges” from the interaction
of a few simple behaviors.

Published Papers:

Werger, Barry B. “Cooperation Without Deliberation: A Minimal Behavior-based Approach
to Multi-robot Teams”, Artificial Intelligence, 110, 1999, 293-320.

Minoru Asada, Peter Stone, Hiroaki Kitano, Barry B. Werger, Yasuo Kuniyoshi, Alexis Dro-
goul, Dominique Duhaut, Manuela Veloso, Hajime Asama and Sho’ji Suzuki, “The RoboCup

Physical Agent Challenge: Phase I”. Applied Artificial Intelligence (AAI), Volume 12, 1998.

Barry B. Werger, “The Spirit of Bolivia: Complex Behavior Through Minimal Control”, in
Proceedings of RoboCup 97, Nagoya, Japan, 1997.

‘Barry B. Werger, "Principles of Minimal Control for Comprehensive Team Behavior”, Pro-
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Figure 4: a) Cross-Inhibition: A cross-inhibited peer group. The Local port of each robot’s
behavior B, broadcasts a locally-computed eligibility estimate to the Best port of each other
robot’s behavior B,. Each Best port maintains the maximum of the eligibility messages it
has received in the current decision cycle. Whichever robot has a local eligibility better than
or equal to the Best it receives writes to its Inhibit port, causing write-inhibition of behavior
B,’s Output port(s) in the other robots, thereby “claiming” the task. b) Cross-Subsumption:
. The structure of a cross-subsumptive system. Subsumption is used to arbitrate within each
robot between cross-inhibited behaviors. Some lines are omitted for clarity; each “layer” is
connected as in a).

ceedings of ICRA-98.

Barry B. Werger and Maja J Matarié, ” Quick’n’Dirty Generalization for Mobile Robot Learn-
ing” presented as a poster at IJCAI-97.

Barry B. Werger, "Multiple Agents From the Bottom Up”, in Proceedings, Fourteenth Na-
tional Conference on Artificial Intelligence (AAAI-97), Providence, RI, 1997.

More information about this work can be found on the project web page:
http://robotics.usc.edu/“barry/ullanta/UPRsoccer.html.

6 Broadcast of Local Eligibility for Group Coordina-
tion ’ |

Our Broadcast of Local Eligibility project investigates the possibilities of extending the
port-arbitrated behavior (PAB) paradigm across networks of robots. While it has often been
hypothesized that there need be no distinction between inter-robot and inter-behavior com-
munication, no previous system has provided standard tools that allow port-based messaging,
suppression, and inhibition between behaviors on separate networked robots. Our intention
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Figure 5: a) CMOMMT Ezperiments: CMOMMT experiments require a team of three
robots to maintain continuous observation of four moving targets in an 18 by 22 foot enclo-
sure. Robots are shown with observation ranges; fields of view extend further. Targets are

numbered circles. Light grey targets and dashed lines indicate initial positions and paths of
targets. b) Robot Testbed: Three Pioneer 2DX robots.

is to demonstrate that behavior-based systems restricted to well-defined port-arbitrated in-
teractions can scale to higher levels of competence than is generally assumed. Specifically,
we show that when the port-arbitration paradigm is extended across networks, the result-
ing systems are able to dynamically reconfigure themselves in order to allocate resources in
response to task constraints, environmental conditions, and system resources. We have de-
veloped the Broadcast of Local Eligibility (BLE) as a general tool for coordination between
robots. “ .

In port-arbitrated behavior-based control (PAB) systems, controllers are written in terms
of behaviors, which are groups of concurrent processes that share a public interface. This
interface is composed of ports, which are registers that each hold a single data item (e.g., an
integer, oat, string, or complex data structure).

Ports in different behaviors are linked together by connections, which are unidirectional
data paths between a source port and a destination port. A port can have any number of
incoming and outgoing connections. When data is written to a port, either directly from a
process within the behavior or indirectly through a connection, it is generally propagated
along all of that port’s outgoing connections. We say “generally” because data flow can

be modified-byspecial connections-which-may-suppress;-inhibit, or-override-data flowing
through other connections.

It is through these mechanisms of suppression and inhibition that subsumption hierar-
chies, as well as other forms of arbitration, can be efficiently and intuitively implemented.
Since connections are external to the behaviors, behavior code is easily re-usable, and in-
teraction between behaviors can be modified dynamically. The port abstraction enforces
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a data-driven approach to programming that “grounds” computation in sensor readings
and effector actions. The PAB approach allows a, clean, uniform interface between system
components (behaviors) at all levels that abstracts away many issues of timing and com-
munication; the “black boxes” of behaviors may contain reactive mappings or deliberative
planners. While our research focuses on non-deliberative approaches, we believe that PAB
interaction between system components can help reduce the complexity of the components
themselves, whatever their type.

Our Broadcast of Local Eligibility (BLE) mechanism, illustrated in F igure 4, is a standard
tool comprised of three specific ports added to BLE-arbitrated behaviors - Local, Best, and
Inhibit. Each robot makes a local (i.e., derived from data from the robots own sensors)
estimate of its own eligibility for a some task. This eligibility estimate is written to the
appropriate behavior’s Local port, which is connected so as to broadcast this estimate to the
Best port of each behavior of the same name on every robot on the local network. The Best
port filters all the incoming messages for the maximum. A comparison is made between the
locally determined eligibility (the Local port’s value) and the best eligibility calculated by a
peer behavior on another robot (the Best port’s value). When a robot’s local eligibility is best
for some behavior B, which performs task T,, it writes to it’s Inhibit port, which is connected
50 as to inhibit the peer behaviors (that is, behaviors B,) on all other robots. In this manner,
the most eligible robot “claims” task T,. Since this inhibition is an active process, failure of
a robot which has claimed a task results in the task being immediately “freed” for potential
takeover by another robot. Since BLE is based on broadcast messages and receiving ports
that filter their input for the “best” eligibility, BLE-based systems are inherently scalable.
Up: to the limit of communication bandwidth, any number of BLE-enabled robots added
to a system will properly interact. BLE allows heterogeneous robots to efficiently allocate
themselves to appropriate tasks without the need for any explicit communication or global
knowledge of particular abilities. The ability to dynamically instantiate and connect BLE-
enabled behaviors allows systems to scale in capability as well as in number of robots.

We have validated our BLE approach through experiments in the domain of cooperative
multi-robot observation of multiple moving targets, or CMOMMT. CMOMMT involves a
team of robots which must attempt to keep a number of prioritized moving targets under
constant observation (as illustrated in Figure 5. To do this, each robot has behaviors referred
to as Observers, each of which is parameterized to cause the robot to attempt to stay within
observation range of a specific Target (i.e., Observer! causes a robot to track Target!). A
Search behavior on each robot causes the robot to wander randomly (intended to be used
when no suitable Targets are within the visual field). BLE was used to arbitrate between
these behaviors, that is, to determine which task (a specific target or search) each robot
in the system should attend to. Results have demonstrated that BLE is able to efficiently
assign robots to subtasks in response to differences in robot capabilities and environmental
situations, maintaining better coverage of targets than three other arbitration schemes used

for comparison.

Scientifically, our research of the Broadcast of Eligibility (BLE) technique demonstrates
that the port-arbitrated behavior-based control paradigm (PAB) can be extended in such
a way that robust, scalable, fully-distributed control for robot teams can be designed and
implemented in a principled manner. A standardized, general technique such as BLE is a
major step towards rigorously-analyzable behavior-based systems: lack of analytic techniques

14




has often been pointed to as a weakness of behavior-based systems.

Further, we have demonstrated that PAB interaction, and BLE in particular, are prin-
cipled means of gaining many of the advantages of biologically-inspired, situated systems.
Previous insect-inspired multi-robot systems were able to take advantage of the fact that
they were situated in the physical world to gain robustness and scalability while minimizing
requirements for local (individual-robot) complexity, but these systems were constructed in
a fairly ad-hoc manner. Our research has shown that PAB systems can be seen as situated
in an abstract “behavior space,” and that BLE is able to structure this behavior space in
a principled manner. BLE systems are as a result responsive to both their physical and
behavior-space environments, gaining the benefits of situatedness while being quick and
straightforward to design, implement, and analyze.

Practically, our work has demonstrated the abovementioned benefits, as well as the effec-
tiveness of the resulting systems, in a multi-robot, multiple-moving-target observation task.
Experimentation has shown BLE systems to be adaptive to unforéseen individual differences
between robots as well as changing environmental situation and task coverage.

The PAB paradigm and BLE are based on “unreliable messaging” in which receipt of a

" sent message is never guaranteed. Systems are thus naturally designed to be robust to many
types of communication failure, able to adapt automatically to variations in information and
resource availability. This is particularly important underwater and surf-zone operations
where communication bandwidth and availability are low.

The layered-behavior approach inherent in BLE allows “bottom-up” design of systems,
in which simple individual behaviors can be well tested and then augmented with higher-
level, but equally simple behaviors, which in turn can be thoroughly tested. Much as local
interactions of ants that follow simple rules lead to complex, globally optimal activity, inter-
action of extremely simple behaviors both within and between robots lead to efficient global
task assignment and performance. The practical benefits of the bottom-up approach have
been widely demonstrated by the effects of the behavior-based “revolution” in robot control,
but have not previously been combined with a principled inter-robot arbitration technique
such as BLE. Thus, systems can be rapidly designed, component behaviors can be easily
and widely reused, and systems can be incrementally tested. For both military and com-
mercial applications, re-usability of well-tested components is of great benefit during design,
deployment, and maintenance stages. .

Finally, PAB and BLE have lead naturally to a change in the concept of a “control lan-
guage” used to command and interact with multi-robot systems. Rather than a conventional
Control Language which has basic commands related to vehicle capabilities (e.g., MOVE,
REPORT), and the associated difficulties of uniform syntax and semantics across robots,
our concept of a behavior-based control language with basic commands for behavior manip-
ulation, and standard-interface behavior libraries. The language itself is thus both simplified

and-more flexible; and-allows on=the-fly-modification-of system behavior-in-unforeseen ways-——

The ability to easily modify individual and group behavior at all levels, indeed to recon-

struct controllers on-the-fly through simple, efficient behavior manipulations, speeds up the
development process significantly and provides for emergency changes to deployed systems.
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Werger, Barry B. and Matari¢, Maja J., “From Insect to Internet: Situated Control for
Networked Robot Teams”, Annals of Mathematics and Artificial Intelligence, 2000.

Werger, Barry B. and Matari¢, Maja J., “Broadcast of Local Eligibility for Multi-Target Ob-
servation”, Distributed Autonomous Robotic Systems 4, Proceedings of DARS 2000, Knoxville,
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Duarte, Christiane N. and Werger, Barry B., “Defining a Common Control Language for
Multiple Autonomous Vehicle Operations”, Proceedings of OCEANS 2000 MTS/IEEE, Prov-
idence, Rhode Island, September, 2000.

Werger, Barry and Matari¢, Maja J., “Broadcast of Local Eligibility: Behavior-Based Control
for Strongly-Cooperative Robot Teams”, Proceedings of the Fourth International Conference
on Autonomous Agents, Charles Sierra, Maria Gini, and Jeffrey S. Rosenschein, eds., ACM
Press, 2000, 21-22.

More information about this work can be found on the project Web page:
http://robotics.usc.edu/ "barry/BLE.

7. On-Line Modeling of Robot Interaction Dynamics

Figure 6: Each robot generates at least one AMM (depending on the application) during
the execution of a task. The AMM captures statistics on behavior execution as the robot
interacts with its environment.
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Learning models of the environment, other robots, and interactions between them is a very
challenging task in mobile robotics. Not only do noisy sensors and actuators pose inherent
difficulty, but in the multi-robot domain which is the focus of our work, non-stationarity is
an additional challenge. Limited computational and memory resources, in conjunction with
often limited amounts of training data, can make brute force approaches to many learning
techniques (i.e., hidden Markov models, partially observable Markov decision processes, re-
inforcement learning) intractable on mobile robots. In order to achieve convergence, it is
often necessary to bias the learning system, for example, by providing an appropriate ini-
tialization, choosing a tractable search space, and/or making heuristic modifications to the
learning algorithm.

We began our research by selecting the underlying behavior structure of the robot con-
troller as the representational level for learning. In our first approach, we constructed trees
of behaviors representing histories of their use (Michaud & Matari¢ 1997). This work was
successfully demonstrated in the context of one or two concurrently learning mobile robots
adapting to a changing environment (in some cases featuring a group of other, non-learning,
unpredictable mobile roaming and interfering robots) in order to more efficiently perform
a foraging task (specifically, finding a target object and delivering it to a goal location)
(Michaud & Matari¢ 1998¢). Besides being able to adapt their strategy to a non-stationary
environment, the robots also demonstrated automated specialization: they adopted different
but complementary strategies so as to minimize interference with each other (Michaud &
Matari¢ 1998a, Michaud & Matari¢ 19985).

In order to expand and generalize this idea of using behaviors themselves as the ba-
sis for a model, we then developed augmented Markov models (AMMSs) as an approach to
creating behavioral models of robot/environment interaction dynamics that accommodates
the domain challenges and limitations mentioned above (Figure 6). The approach is com-
putationally inexpensive, incrementally generating and modifying parsimonious models in
real-time using only a small continuous stream of training data. For model generation, each
data symbol indicates which behaviors in the robot are currently active. Because behaviors
encompass both sensing and action, they provide a rich representational substrate for the
models and help provide parsimony. In essence, an AMM is used as a repository of statistics
about the execution of behaviors in a controller as the robot interacts with its environment
and other robots. The basic structure of an AMM is a semi-Markov chain, with each state
representing a behavior, and with probabilistic transitions (links) between states. The semi-
Markov chain is augmented with statistics on state and link usage which are employed in
model construction, modification, and utilization.

AMMSs have a number of characteristics that make them naturally applicable to the
robotics domain: they are compact, have a low computational overhead, and can be gener-
ated and used in real-time in one trial. We have demonstrated the applicability of AMMs

to a number adaptation and learning problems in mobile robotics, described next. .

Published Papers:

Goldberg, Dani and Matarié¢, Maja J., “Augmented Markov Models”, USC Institute for
Robotics and Intelligent Systems Technical Report IRIS-99-367, 1999.
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Goldberg, Dani and Matari¢, Maja J., “Mobile Robot Group Coordination Using a Model of
Interaction Dynamics”, Proceedings of the SPIE: Sensor Fusion and Decentralized Control
in Robotic Systems I, Gerard T. McKee and Paul S. Schenker, eds., SPIE, 1999, 63-73.

Additional information about this work and the five AMM applications described in the fol-
lowing subsections can be found on the project web page:
http://robotics.usc.edu/ agents/projects/amms.html.

7.1 AMMs for Fault Detection

A robot’s individual performance can impact the ability of a group to achieve effective
group-level coordination. As an.example, consider a scenario where a single robot develops
a hardware failure and is neither able to complete its portion of the group task, nor to
inform the other group members of its failure. If the members do not know to compensate
for the incapacitated robot, the group as a whole may fail to complete its task. Monitoring
individual robot performance in this case for fault detectlon is thus an important component
of group coordination. :

We limit our consideration of faults to those that would keep a robot in one behavior
for an inordinate period of time. Such faults may include sensor and actuator failures, as
well as the robot becoming physically stuck. To detect a potential fault, we used our AMM
construction algorithm to compare, at each time step, the total time a robot has spent in
the current AMM state to the mean and variance calculated from previous data for that
staté. A statistical confidence estimate on the upper bound of the mean is used to indicate
a potential fault.

We tested this approach on-line by having the robots perform elements of a foraging task.
If the model detected that the robot had been in one of the behaviors too long, it would send
a signal to the robot, which would in turn beep (a call for assistance) to indicate a potential
fault. We simulated a fault (the robot getting stuck on a rock) by lifting the drive wheels
off the ground. During the dozen trials we conducted, the robot never failed to detect the
fault.

Published Papers:
Goldberg, Dani and Matari¢, Maja J., “Mobile Robot Group Coordination Using a Model of
Interaction Dynamics”, Proceedings of the SPIE: Sensor Fusion and Decentralized Control

in Robotic Systems II, Gerard T. McKee and Paul S. Schenker, eds., SPIE, 1999, 63-73.

Goldberg, Dani and Matarié, Maja J., “Coordinating Mobile Robot Group Behavior Using a
Model of Interaction Dynamics”, Proceedings of Autonomous Agents 99, Oren Etzioni, Jorg

P. Juller, and Jeffrey M. Bradshaw, eds., ACM Press, 1999, 100-107.
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7.2 AMMs for Group Affiliation

The ability of a robot to determine what group it belongs to (i.e., its group affiliation) is
another important component of group coordination. Suppose a robot were introduced into
an environment containing several groups specializing in different tasks. In order to be able
to coordinate its activity with the group it fits into best, it must have some mechanism for
determining its group affiliation. In a learning system where the robot’s final behavior is not
predetermined, group affiliation is not designated a priori.

AMMs provide a mechanism for determining group affiliation. Two robots that wish
to ascertain whether they belong to the same group can transmit data generated by their
AMMSs, then determine the probability of the other robot’s data on their respective AMMSs.
If each AMM accepts data generated by the other’s AMM (with probability >0), then the
robots are designated as members of the same group. They are considered to have the same
ability, or capacity for performing a particular task.

In addition to this coarse “don’t accept”/“accept”, or ability-based, determination of
group affiliation, a more refined categorization can be made by considering the actual prob-
abilities of symbol sequences. To test this notion, we conducted 2 sets of trials with the
robots performing the wandering-avoiding behaviors. In one set of trials, the region was free
of obstacles, in the other, it was sparsely distributed with small obstacles. Our hypothesis
was that a data set from an AMM generated in one of the two environments should pro-
duce higher probabilities on the AMMs from that environment than on the ones from the
other environment. This reliably proved to be the case after only a few minutes of model
generation. These results, produced from little training data and very similar environments,
suggest that AMMs can be used to make subtle behavioral distinctions. These distinctions
can be thought of as experience-based. Since the robots are able to and do perform the same
task, it is their specific individual experiences that differ, and are the basis for distinction.
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Goldberg, Dani and Matarié¢, Maja J., “Mobile Robot Group Coordination Using a Model of
Interaction Dynamics”, Proceedings of the SPIE: Sensor Fusion and Decentralized Control
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7.3 AMMs for Dynamic Leader Selection

Another issue impacting group coordination is performance. Consider a group of robots
organized in a hierarchy. Due to inherent variations in sensors and actuators, or inexperience
with a specific robotic platform, it may be difficult to accurately assess the ability of a robot
at performing a novel task. Alternatively, even if performance history is available, there
- is no guarantee that future performance will neither improve nor degrade. The ability of
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individuals may change over time, but it is important that the performance of the group
remain as high as possible. To achieve this, some mechanism for dynamic restructuring
based on performance is necessary, especially in social structures such as hierarchies where
significant reliance is placed on the most dominant individuals. We have explored dynamic
leader selection using AMMs as one mechanism for restructuring hierarchies and maintaining
or improving group performance.

In our experiments, four robots had to perform the foraging task, with a shorter comple-
tion time corresponding to better group performance. The robots were organized in a strict
dominance hierarchy such that whenever two or more robots simultaneously had objects to
deliver to the goal, the most dominant individual was allowed to proceed, while the less
dominant individual(s) each waited their turn. The four robots, however, were not equally
efficient at performing the task. The code for each robot was identical, except that the max-
imum speed was limited to different values, as follows: Robot0 “full-speed” (= 0.5 ft/sec);
Robotl “two-thirds-speed” (& 0.33 ft/sec); Robot2 “half-speed” (= 0.25 ft/sec); and Robot3
“one-third-speed” (= 0.17 ft/sec).

We conducted three sets of experiments two with fixed hierarchies as baselines of com-
parison to the third, which allowed hierarchy restructuring through the use of AMMs. The
experiments were designated as follows:

1. Control: The robots were members of a fixed hierarchy with the relative dominance
of each inversely proportional to its maximum speed. Thus, Robot3 (the slowest) was
the most dominant, and Robot0 (the fastest) was the least dominant.

E\D’

Optimal: Complementary to Control, these experiments had the robots arranged in
a fixed, optimal hierarchy, with the fastest as most dominant, and slowest as least
dominant.

3. Dynamic Leader Selection (DLS): The hierarchy was initialized to be identical
to that of the Control experiments, but allowed hierarchy restructuring to improve
performance.

In the DLS experiments, with no @ priori information about a robot’s speed provided,
an AMM for each robot was constructed at run-time and used to evaluate performance. The
metric of evaluation employed was a ratio giving the number of pucks per unit time that a
robot is able to deliver: the higher this value, the faster the robot delivers pucks, and the
better its performance. Each robot began a trial with its performance value initialized to
zero. As it executed the task, its AMM was continuously updated, as was the performance
value derived from it. The robot’s position in the hierarchy was also updated so that it was
more dominant than all other robots with lower performance values.

Table 1 presents the average time to completion (i.e., group performance) for the three
~ ~————experiments.In-the-experiments-using-dynamic-leader selection-we-see-a-significant im--
provement in the time to completion over the Control experiments, mirroring a successful
restructuring of the hierarchies to a more optimal configuration. The Optimal time is slightly,
though not significantly, lower than the DLS time. This difference may be attributed to the
fact that the DLS experiments are initially conﬁgured with the less efficient Control hierar-
chy structure.




Control | DLS | Optimal
Mean time to completion | 27.2 23.4 224

Standard deviation 1.1 1.3 1.1

Table 1: Mean time to completion for the Control, Dynamic Leader Selection, and Optimal
experiments.
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7.4 AMDMs for Regime Detection

In certain classes of mobile robot tasks, it may be necessary for a robot to detect significant
global changes in the environment and modify its behavior or the task structure accordingly.
The environment can be in a particular regime (i.e., a period of steady state) and then
switch to a different regime requiring the robot to modify its behavior. Detecting such
environmental regime changes may be difficult for a number of reasons: ‘ '

¢ The robot may have no a priori knowledge of the environment and thus also lack a
baseline for gauging environmental shifts.

e Given only local sensing capabilities, the robot may require a significant amount of time
to estimate the state of the environment. Any estimate of state, however, may be outdated
in a non-stationary system.

¢ The nature of the task may be stochastic, with uncertainties large enough to preclude
an effective predictive model of environmental state, or dynamics too complex to make the
development of such a model feasible or tractable. Alternatively, however potentially simple
the system, there may be no a priori data with which to instantiate a model.

o Depending on the task or environment, the time scale of the environmental change that
must be detected may differ. For example, in one task, the environmental change may be

change may be slow and incremental, requiring the examination of a large time interval for

detection. Hard-coding the robot with a specific time scale to use for regime detection can

be problematic. A time scale that is too small makes the robot incapable of detecting the

change. Conversely, a time scale that is unnecessarily large increases the time required to
~ detect the change and may be undesirable in time-critical situations. '
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Figure 7: The land mine collection task. Open circles represent large mines and closed circles
represent small mines. The robot can only deliver one mine at a time to the goal (Home).

As a concrete example, consider the task of collecting undetonated land mines in a field
(a type of foraging). There are two types of mines, large and small, with destructive power
proportional to their size (Figure 7). In this scenario, the robot is only able to carry one
mine at a time, producing a large cost (in time) for each mine collected. It is important
that the more destructive large mines be collected.first, but that the robot be able to decide
when to switch to the smaller mines. (Here we assume that the task requires the robot to
collect one type of mine at a time. Alternatively, the robot might switch between types as
necessary. We explore this alternative when we consider a reward maximization scenario in
the next section.) ’

The difficulty of this task is compounded when the issues mentioned above apply. The
robot may have no a priori information about the numbers of large and small mines in the
field, their distributions, or relative proportions. The robot may also lack global sensing
of the mines in the field and may not know the time scale appropriate to its decision for
switching between mine types. This decision is dependent on factors including the size of
the field and the relative densities of the two types of mines. :

We have developed a mechanism for regime detection that resolves the above issues. The
approach uses multiple augmented Markov models (AMMSs). The AMM:s are used to capture,
in real time, the dynamics of a robot interacting with its environment in terms of the behav-
iors it performs. One AMM is created and maintained at each time scale that is monitored,
and statistics about the environment at that time scale are derived from it. As task execution

continues, AMMs are dynamically generated to accommodate the increasing time intervals.
Sets of statistics from the models are used to determine whether the environmental regime
has changed. This approach requires no a priori knowledge, uses only local sensing, and cap-
tures the notion of time scale. Additionally, it works naturally with stochastic task domains
where variations between trials may change the most appropriate time scale for regime detec-
tion. We have validated the approach on a mobile robot performing the mine collection task.
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7.5 AMDMs for Reward. Maximization

In certain classes of mobile robot tasks, a robot may be required to perform optimally with
respect to the information it possesses about the structure of its environment. Reward
maximization may be used as a means of quantifying performance. In that framework, the
robot receives reward (e.g., points) in proportion to its performance. Reward maximization
in a non-stationary environment requires the robot to be able to estimate the state of the
changing environment. There are a number of issues that can compound the difficulty of
this problem. Some of them we have mentioned in the previous section:

e The robot may have no a priori knowledge of the environment.
o The robot may be limited to local sensing.
o The task may be stochastic.

¢ The time scale at which the non-stationarity of the environment manifests and thus can
be detected may depend heavily on the task.

In addition to these issues, there is the further difficulty that in a stochastic system, the
variability of execution must be considered in relation to detection of the non-stationarity.
The variability associated with performing a task (or elements thereof) may be enormous
and effectively mask gradual shifts in the environment. Conversely, in a system with very
low variability, even minute shifts may be easily detected. Thus, effective estimation of
environmental state requires an understanding of the system’s variability (as often measured
by variances, covariances, etc.).

Similar to our previous experimental scenario, consider the task of collecting undetonated
land mines in a field. Assume that there are two types of mines, large and small, with
destructive power proportional to their size. The robot’s goal is to minimize the total
destructive power of the mine field as much as possible during a given period of time. When
the robot is given points in proportion to the destructive power of the mines it collects, the
goal becomes equivalent to reward maximization. To accomplish its goal, the robot must
have enough data about its environment (the field) to intelligently decide whether it is best

to collect large mines or small ones at each point in time. The difficulty of this task is
compounded when the issues mentioned above apply. The heart of this problem is to use
the best possible estimate of environmental state given the limitations of the system.

We have developed an algorithm that provides a moving average estimate of the state
of a non-stationary system. The algorithm dynamically adjusts the window size used in
the moving average to accommodate the variances and type of non-stationarity exhibited
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by the system, while discarding outdated and redundant data. Multiple AMMs are learned,
capturing in real time the dynamics of a robot interacting with its environment in terms
of the behaviors it performs. One AMM is learned and maintained at each time scale that
is monitored, and statistics about the environment at that time scale are derived from it.
The state of the environment is thus estimated indirectly though the robot’s interaction
with it. As task execution continues, AMMs are dynamically generated to accommodate the
increasing time intervals. Sets of statistics from the models are used to determine whether old
data and AMMs are redundant/outdated and can be discarded. This approach requires no a
priori knowledge, uses only local sensing, and captures the notion of time scale. Additionally,
it works naturally with stochastic task domains where variations between trials may change
the most appropriate amount of data for state estimation.

We have validated our approach using an implementation of the mine collection task with
a real mobile robot and.in simulation. We have conducted experiments in environments with
both abruptly changing and gradually shifting non-stationarities. The data substantiate the
effectiveness of our moving average algorithm using AMMs.
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8 Accomplishments and Signiﬁcance

The research enabled and supported by this ONR grant has produced scientific as well as
practical results. As demonstrated by the very large number of publications, the scientific
accomplishments have been recognized by the robotics community. Largely based on this
work, the PI has received several awards for research: :

@ USC School of Engineering Junior Research Award 2000
¢ IEEE Robotics and Automation Society Early Career Award 2000
o MIT Technology Review TR100 Innovation Award 1999

o ACM Paper Award for co-authored student paper Agents-99

e NSF Career Award 1996-2000

Note that one of the above, the ACM Best Paper award, is for a paper, co-authored with
a student funded by this grant, describing research on AMMs funded specifically by this
grant.
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This research has also had implications on teaching and the general public. The PI re-
ceived the USC Innovative Undergraduate Teaching Award 1999-2000 for the class designed
on the principles of robot control developed with this grant. Media attention to this research
has been quite overwhelming. Some selected media coverage about the PI and this research,
all unsolicited by the PI, is listed below.

e One of 7 scientists (including Nobel laureate Gertrude Elion, Ashok Gadgil, Michio Kaku,
Steven Pinker, Karol Sikora, and Patricia Wright) featured in “Me & Isaac Newton”, a film
directed by Michael Apted, to be released in 2000.

o PBS Scientific American Frontiers “Natural Born Robots”, hosted by Alan Alda, Nov 2,
1999.

o ABC World News Tonight with Peter Jennings, May 5, 1999.

e ABC Radio in Perth, Australia, Jul 23, 1998.

e BBC World Service in London, UK, Jul 21, 1998.

e The Washington Times, DC, ‘Robotics conventxon stresses practicality” by Joann Loviglo,
Aug 2, 1997.

. Madernmselle article on social behavior by Tonice Sgrlgnoh Oct 1997.

e The Boston TAB, “Imagine This! From local labs and universities come 10 ideas that will
change our lives”, cover story by Courtney Claire Brigham, Jun 3, 1997.

- o Wired, Japan, “Herd Mentality” by Jerry Shine, translated by S. Enami, May 1997.

o Electronics Times, “Ant approach aids Nerd Herd” by David Larner, Mar 6, 1997.

e Beyond 2000, hosted by Pat McGuinness, Nov 12, 1996.

e Computer Zeitung, Germany, by Ruth Henke and Rainer Scharf, Nov 7, 1996.

e Focus Magazine, UK, “Invasion of the Robots” by Sean Blair, Oct 1996.

e Discover Channel Al Series, interview by Cliff Lonsdale and Jane Hawkes, Sep 16, 1996.

e Wired, “Herd Mentality” by Jerry Shine, Jun 1996.

o Popular Science, “Go team Go!” by Steve Nadis with Jerry Shine, May 1996.

e New Zealand Public Radio, Mar 30, 1996.

e MIT Technology Review, article by Robert J. Crawford, Apr 1996.

e Utne Reader, “The Sharebots” by Carl Zimmer, Jan 1996.

The research described here has also been transitioned into Navy-relevant application
areas. Specifically, we have worked closely with Christiane Duarte of NUWC and have
helped her establish a Group Robotics Laboratory, with a heterogeneous group of various
small wheeled robots networked via wireless Ethernet. We have held a workshop, with
presentations by the PI and the students funded by this ONR grant (specifically Barry
Werger and Dani Goldberg), to further help and inform the members of Duarte’s team. At
this time, members of her laboratory are already using Ayllu, the language/architecture in

_ which BLE is implemented, developed in our lab, on their Pioneer robots, and adapting it to

other platforms and simulators as the main behavior-coding and communication technology.

BLE will therefore be used in their development and experiments, and plans include use

of BLE to link AUVs as well. Similarly, our work towards the behavior-based Common

Control Language will continue to be directly used on NUWC Group Robotics Lab Ayllu-
based platforms. '




We have also worked with Chris Duarte to apply the concepts of robot chaining to mine-
sweeping operations at NUWC. A chain of robots maintaining sensor contact, sweeping in
a circle, can potentially provide coverage guarantees and approximate locations of detected
mines without need for localization or global communication capabilities. This is an immedi-
ate application being explored, although our results are being considered by other researchers .
(including those at Sandia National Laboratories), for mine-sweeping operations in different
environments (land, surzone, etc.).

Web Dissemination

The PI has developed and maintains a large collection of informative Web pages on this
research:

http://robotics.usc.edu/"maja/robot-control.html
http://robotics.usc.edu/"maja/bbs.html
http://robotics.usc.edu/ "maja/gruop.html
http://robotics.usc.edu/ "maja/learning.html
http://robotics.usc.edu/ "barry/Chaining.html
http://robotics.usc.edu/ dani/hetero-homogeneous-groups.html
http://robotics.usc.edu/ barry/ullanta/UPRsoccer. html
http://robotics.usc.edu/“barry/BLE

http://robotics.usc.edu/ agents/projects/amms.html
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List of Publications

Note: this list is a superset of the papers listed throughout this report, since not publications
all were listed in specific categories above.

Refereed Journal Papers (10)

Werger, Barry B. and Matari¢, Maja J., “From Insect to Internet: Situated Control for
Networked Robot Teams”, Annals of Mathematics and Artificial Intelligence, 2000.

Werger, Barry B. “Cooperation Without Deliberation: A Minimal Behavior-based Approach
to Multi-robot Teams”, Artificial Intelligence, 110, 1999, 293-320.

Michaud, Francois and Matarié¢, Maja J., “Representation of behavioral history for learning

in nonstationary conditions”, Robotics and Autonomous Systems, 29(2), Nov 30, 1999.

Fontan, Miguel S. and Matari¢, Maja J., “Territorial Multi-Robot Task Division”, IEEF
Transactions on Robotics and Automation, 14(5), Oct 1998.

Matarié, Maja J., “Using Communication to Reduce Locality in Distributed Multi-Agent
Learning”, Journal of Experimental and Theoretical Artificial Intelligence, special issue on
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Learning in DAI Systems, Gerhard Weiss, ed., 10(3), Jul-Sep, 1998, 357-369.

Matarié, Maja J., “Coordination and Learning in Multi-Robot Systems”, IEEE Intelligent
Systems, Mar/Apr 1998, 6-8.

Michaud, Frangois and Matari¢, Maja J., “Learning from History for Behavior-Based Mobile
Robots in Non-Stationary Conditions”, Autonomous Robots, 5(3-4), Jul/Aug 1998, 335-354,
and Machine Learning, 31(1-3), 141-167, joint special issue on “Learning in Autonomous
Robots.”

Matari¢, Maja J., “Behavior-Based Robotics as a Tool for Synthesis of Artificial Behavior
and Analysis of Natural Behavior”, Trends in Cognitive Science, 2(3), Mar 1998, 82-87.

Matarié, Maja J., “Behavior-Based Control: Examples from Navigation, Learning, and
Group Behavior”, Journal of Theoretical and Ezperimental Artificial Intelligence, special
issue on Software Architectures for Physical Agents, 9(2-3), H. Hexmoor, I. Horswill, and D.
Kortenkamp, eds., 1997, 323-336.

Matari¢, Maja J., “Behavior-Based Robotics”, invited contribution to the MIT Encyclopedia
of Cognitive Science, R. Wilson and F. Keil, eds., MIT Press, April 1999, 74-77.

Refereed Conference Papers (13) |

Werger, Barry B. and Matari¢, Maja J., “Broadcast of Local Eligibility for Multi-Target Ob-
servation”, Distributed Autonomous Robotic Systems 4, Proceedings of DARS 2000, Knoxville,
Tennessee.

Duarte, Christiane N. and Werger, Barry B., “Defining a Common Control Language for
Multiple Autonomous Vehicle Operations”, Proceedings of OCEANS 2000 MTS/IEEE, Prov-
idence, Rhode Island, September, 2000. '

Goldberg, Dani and Matari¢, Maja J., “Learning Multiple Models for Reward Maximiza-
tion”, Proceedings of the Seventeenth International Conference on Machine Learning, Pat
Langley, ed., Morgan Kaufman Publishers, 2000, 319-326.

Goldberg, Dani and Matarié, Maja J., “Reward Maximization in a Non-Stationary Mobile
Robot Environment”, Proceedings of the Fourth International Conference on Autonomous
Agents, Charles Sierra, Maria Gini, and Jeffrey S. Rosenschein, eds., ACM Press, 2000, 92-99.

Goldberg, Dani and Matarié, Maja J., “Mobile Robot Group Coordination Using a Model of
Interaction Dynamics”, Proceedings of the SPIE: Sensor Fusion and Decentralized Control
in Robotic Systems II, Gerard T. McKee and Paul S. Schenker, eds., SPIE, 1999, 63-73.

Goldberg, Dani and Matarié¢, Maja J., “Coordinating Mobile Robot Group Behavior Using a
Model of Interaction Dynamics”, Proceedings of Autonomous Agents '99, Oren Etzioni, Jorg
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P. Juller, and Jeffrey M. Bradshaw, eds., ACM Press, 1999, 100-107.

Michaud, Frangois and Matari¢, Maja J., “Learning from History for Adaptive Mobile Robot
Control”, Proceedings, IROS-98, Victoria, BC, Canada, Oct 12-16, 1998.

Michaud, Frangois and Matarié, Maja J., “A History-Based Approach for Adaptive Robot
Behavior in Dynamic Environments”, Autonomous Agents ’98, Katia P. Sycara and Michael

Wooldridge, eds., ACM Press, 1998, 422-429.

Matari¢, Maja J., “Using Communication to Reduce Locality in Distributed Multi-Agent
Learning”, Proceedings, AAAI-97, Providence, RI, Jul 27-31, 1997, 643-648.

Goldberg, Dani and Matari¢, Maja J., “Interference as a Tool for Designing and Evaluating
Multi-Robot Controllers”, Proceedings of the Fourteenth National Conference on Artificial
Intelligence, AAAI Press, 1997.

Miéhaud, Francois and Matarié¢, Maja J., “Behavior Evaluation and Learning from an Inter-
nal Point of View”, Proceedings, FLAIRS-97, Daytona,-Florida, May 1997.

Fontan, Miguel S. and Matari¢, Maja J., “A Study of Territoriality: The Role of Critical
Mass in Adaptive Task Division”, Proceedings, From Animals to Animats 4, {th Interna-
tional Conference on Simulation of Adaptive Behavior (SAB-96), P. Maes, M. Matarié¢, J-A.
Meéyer, J. Pollack, and S. Wilson, eds., MIT Press, 1996, 553-561.

Werger, Barry B. and Matarié, Maja J., “Robotic Food Chains: Externalization of State
and Program for Minimal-Agent Foraging,” From Animals to Animats 4, Proceedings of the
Fourth International Conference on Simulation of Adaptive Behavior, MIT Press, pp. 625-
634.

Refereed Conference Posters (4)

Werger, Barry and Matari¢, Maja J., “Broadcast of Local Eligibility: Behavior-Based Control
for Strongly-Cooperative Robot Teams”, Proceedings of the Fourth International Conference
on Autonomous Agents, Charles Sierra, Maria Gini, and Jeffrey S. Rosenschein, eds., ACM
Press, 2000, 21-22. ‘

Sankaranarayanan, Aruna, S. and Matarié, Maja J., “The Multi-Agent-based Schedule Cal-
culator (MASC) System”, Autonomous Agents 98, Katia P. Sycara and Michael Wooldridge,
eds., ACM Press, 1998, 465-466.

Werger, Barry B. and Matarié, Maja J., “Quick 'n’ Dirty Generalization for Mobile Robot
Learning”, [JCAI-97, Nagoya, Japan, Aug 26-28, 1997. '

Matari¢, Maja J., “Studying the Role of Embodiment in Cognition”, Annual Meeting of the
Society for Philosophy and Psychology, The New School for Social Research, New York, Jun
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5-8, 1997.
‘Technical Reports (8)

Goldberg, Dani and Matari¢, Maja J., “Robust Behavior-Based Control for Distributed
Multi-Robot Collection Tasks”, USC Institute for Robotics and Intelligent Systems Tech-
nical Report IRIS-00-387, 2000. Also submitted to JEEE Transactions on Robotics and
Automation.

Goldberg, Dani and Matari¢, Maja J., “Detecting Regime Changes with a Mobile Robot us-
ing Multiple Models”, USC Institute for Robotics and Intelligent Systems Technical Report
IRIS-00-382, 2000.

Werger, Barry B. and Matari¢, Maja J. “Exploiting embodiment in multi-robot teams”, USC
Institute for Robotics and Intelligent Systems Technical Report IRIS-99-378, 1999.

Goldberg, Dani and Matarié¢, Maja J., “Augmented Markov Models”, USC Institute for
Robotics and Intelligent Systems Technical Report IRIS-99-367, 1999.

Michaud, Frangois and Matarié¢, Maja J., “A History-Based Learning Approach for Adaptive
Robot Behavior Selection”, Brandeis University Computer Science Technical Report CS-97-
192, Jul 1997.

Goldberg, Dani and Matari¢, Maja J., “Interference as a Guide for Designing Efficient Group
Behaviors”, Brandeis University Computer Science Technical Report CS-96-186, 1996.

Matari¢, Maja J., “Using Communication to Reduce Locality in Distributed Multi-Agent
Learning”, Brandeis University Computer Science Technical Report CS-96-190, Nov 1996.

Fontan, Miguel S. and Matarié, Maja J., “The Role of Critical Mass in Multi-Robot Adap-
tive Task Division”, Brandeis University Computer Science Technical Report CS-96-187, Oct
1996.

Symposia and Workshops (2)
Tambe, Milind, Shen, Wei-min, Matari¢, Maja J., Pynadath, David, Goldberg, Dani, Modi,

Jay, Qiu, Zhun, Salemi, Behnam, “Team Work in' Cyberspace: Using TEAMCORE to Make
Agents Team-Ready”, Proceedings of the 1999 AAAI Spring Symposium.

Matarié, Maja J., “Studying the Role of Embodiment in Cognition”, AAAI Fall Symposium

on Embodied Cognition and Action, MIT, Cambridge, MA, Nov 9-11, 1996.
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